Reduction of Second Order Systems Using Second Order Krylov Subspaces

نویسندگان

  • Boris Lohmann
  • Behnam Salimbahrami
چکیده

By introducing the second order Krylov subspace, a method for the reduction of second order systems is proposed leading to a reduced system of the same structure. This generalization of Krylov subspace involves two matrices and some starting vectors and the reduced order model is found by applying a projection directly to the second order model without any conversion to state space. A numerical algorithm called second order Arnoldi is used to calculate the projection matrix. A sufficient condition for stability of the reduced model is given and finally, the method is applied to an electrostatically actuated beam. Copyright c ©2005 IFAC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Order Reduction of Proportionally Damped Second Order Systems

In this paper, structure preserving order reduction of proportionally damped and undamped second order systems is presented. The discussion is based on Second Order Krylov Subspace method and it is shown that for systems with a proportional damping, the damping matrix does not contribute to the projection matrices and the reduction can be carried out using the classical Krylov subspaces. As a r...

متن کامل

Moment Matching Theorems for Dimension Reduction of Higher-Order Dynamical Systems via Higher-Order Krylov Subspaces

Moment matching theorems for Krylov subspace based model reduction of higherorder linear dynamical systems are presented in the context of higher-order Krylov subspaces. We introduce the definition of a nth-order Krylov subspace Kn k ({Ai} n i=1;u) based on a sequence of n square matrices {Ai}i=1 and vector u. This subspace is a generalization of Krylov subspaces for higher-order systems, incor...

متن کامل

Krylov Subspaces Associated with Higher-order Linear Dynamical Systems

A standard approach to model reduction of large-scale higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for model reduction of first-order systems. This paper presents some results about the structure of the block-Krylov subspaces induced by the matrices of such equivalent first-order formulations of hig...

متن کامل

Krylov Subspace Methods in Linear Model Order Reduction: Introduction and Invariance Properties

In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using bases of some subspaces called input and output Krylov subspaces. One aim of this paper is describing the invariancies of reduced order models using these m...

متن کامل

Introduction to Krylov Subspace Methods in Model Order Reduction

In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using the bases of some subspaces called input and output Krylov subspaces. The aim of this paper is to give an introduction into the principles of Krylov subspac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005